References

1.
Safanelli JL, Hengl T, Parente LL, Minarik R, Bloom DE, Todd-Brown K, et al. Open soil spectral library (OSSL): Building reproducible soil calibration models through open development and community engagement. PLoS One. 2025;20: e0296545. doi:10.1371/journal.pone.0296545
2.
Safanelli JL, Sanderman J, Bloom D, Todd-Brown K, Parente LL, Hengl T, et al. An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter. Geoderma. 2023;440: 116724. doi:10.1016/j.geoderma.2023.116724
3.
Partida C, Safanelli JL, Mitu SM, Murad MOF, Ge Y, Ferguson R, et al. Building a near-infrared (NIR) soil spectral dataset and predictive machine learning models using a handheld NIR spectrophotometer. Data Brief. 2025;58: 111229. doi:10.1016/j.dib.2024.111229
4.
Mitu SM, Smith C, Sanderman J, Ferguson RR, Shepherd K, Ge Y. Evaluating consistency across multiple NeoSpectra (compact fourier transform near‐infrared) spectrometers for estimating common soil properties. Soil Sci Soc Am J. 2024;88: 1324–1339. doi:10.1002/saj2.20678
5.
Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, et al. mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source Software. 2019. doi:10.21105/joss.01903
6.
Quinlan J. Learning with continuous classes. Proc 5th australian joint conference on artificial intelligence, tasmania, 1992. 1992. pp. 343–348.
7.
Quinlan J. Combining instance-based and model-based learning. Proc Tenth int Conference on machine learning. 1993. pp. 236–243.
8.
Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 2020;415: 295–316. doi:10.1016/j.neucom.2020.07.061
9.
Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy. 1989;43: 772–777. doi:10.1366/0003702894202201
10.
Norinder U, Carlsson L, Boyer S, Eklund M. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. Journal of Chemical Information and Modeling. 2014;54: 1596–1603. doi:10.1021/ci5001168
11.
Cortés-Ciriano I, Westen GJP van, Bouvier G, Nilges M, Overington JP, Bender A, et al. Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics. 2015;32: 85–95. doi:10.1093/bioinformatics/btv529
12.
Dangal S, Sanderman J, Wills S, Ramirez-Lopez L. Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Systems. 2019;3: 11. doi:10.3390/soilsystems3010011
13.
Jović B, Ćirić V, Kovačević M, Šeremešić S, Kordić B. Empirical equation for preliminary assessment of soil texture. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;206: 506–511. doi:10.1016/j.saa.2018.08.039
14.
Garrett LG, Sanderman J, Palmer DJ, Dean F, Patel S, Bridson JH, et al. Mid-infrared spectroscopy for planted forest soil and foliage nutrition predictions, new zealand case study. Trees, Forests and People. 2022;8: 100280. doi:10.1016/j.tfp.2022.100280
15.
Schiedung M, Bellè S-L, Malhotra A, Abiven S. Organic carbon stocks, quality and prediction in permafrost-affected forest soils in north canada. CATENA. 2022;213: 106194. doi:10.1016/j.catena.2022.106194
16.
Wijewardane NK, Ge Y, Wills S, Loecke T. Prediction of soil carbon in the conterminous united states: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project. Soil Science Society of America Journal. 2016;80: 973–982. doi:10.2136/sssaj2016.02.0052
17.
Summerauer L, Baumann P, Ramirez-Lopez L, Barthel M, Bauters M, Bukombe B, et al. The central african soil spectral library: A new soil infrared repository and a geographical prediction analysis. SOIL. 2021;7: 693–715. doi:10.5194/soil-7-693-2021
18.
Chang C-W, Laird D, Mausbach MJ, Hurburgh Jr CR. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal. 2001;65: 480. doi:10.2136/sssaj2001.652480x
19.
Jackson JE, Mudholkar GS. Control procedures for residuals associated with principal component analysis. Technometrics. 1979;21: 341–349. doi:10.1080/00401706.1979.10489779
20.
Santana FB de, Hall RebeccaL, Lowe V, Browne MA, Grunsky EC, Fitzsimons MM, et al. A systematic approach to predicting and mapping soil particle size distribution from unknown samples using large mid-infrared spectral libraries covering large-scale heterogeneous areas. Geoderma. 2023;434: 116491. doi:10.1016/j.geoderma.2023.116491
21.
Wijewardane NK, Ge Y, Wills S, Libohova Z. Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library. Soil Science Society of America Journal. 2018;82: 722–731. doi:10.2136/sssaj2017.10.0361
22.
Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science. 2018;69: 140–153. doi:10.1111/ejss.12499
23.
Vagen T-G, Winowiecki LA, Desta L, Tondoh EJ, Weullow E, Shepherd K, et al. Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009-2013. World Agroforestry - Research Data Repository; 2020. doi:10.34725/DVN/QXCWP1
24.
Aitkenhead MJ, Black HI. Exploring the impact of different input data types on soil variable estimation using the ICRAF-ISRIC global soil spectral database. Applied spectroscopy. 2018;72: 188–198. doi:10.1177/0003702817739013
25.
Wadoux AMJC, Malone B, McBratney AB, Fajardo M, Minasny B. Soil Spectral Inference with R: Analysing Digital Soil Spectra Using the R Programming Environment. Springer International Publishing; 2021.
26.
Benedetti F, van Egmond F. Global Soil Spectroscopy Assessment. Spectral soil data — Needs and capacities. Rome, Italy: FAO; 2021. p. 42. doi:10.4060/cb6265en